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Abstract—Low-noise broad intermediate frequency (IF) band In traditional waveguide designs, which place the diode across
240-GHz subharmonically pumped planar Schottky diode mixers the signal guide, this GaAs substrate can significantly degrade

for space-borne radiometers have been developed and charac- :
terized. The planar GaAs Schottky diodes are fully integrated performance. To circumvent these concems and allow the

with the RF/IF filter circuitry via the quartz-substrate upside- planar devices to be used. at much higher fr_equenc!es, a
down integrated device (QUID) process resulting in a robust technique was developed to integrate the GaAs diodes with the
and easily handled package. A best double-sideband-mixer noise physically larger surrounding microstrip filter circuitry, which
temperature of 490 K was achieved with 3 mW of local-oscillator js generally formed on lower-dielectric-constant lower-loss

power at 2-GHz IF. Over an IF band of 1.5-10 GHz, the noise : ; ; _ AL
temperature is below 1000 K. This state-of-the-art performance quartz. This technique, designated quartz-substrate upside

is attributed to lower parasitic capacitance devices and a low-loss down integrated device (QU|D> for QL.JID Processf’ utiIizes_ a
waveguide circuit. Device fabrication technology and the resulting heat-cure epoxy to bond the diode chip, with devices upside-
RF mixer performance obtained in the 200-250-GHz frequency down onto a quartz substrate [9], [10]. Discrete substrateless

range will be described. upside-up planar chips on quartz were demonstrated as early
Index Terms—Millimeter-wave receivers, mixer noise, mixers, as 1990 [11]. Although the QUID technology was developed
Schottky diode mixers. explicitly to enable the use of planar diodes in the 400—700-

GHz range, where chip size is a limiting factor, its advantages
at lower frequencies are apparent. Firstly, by combining the
o . GaAs devices with the filter circuitry, the “chip” size is
SNCE THE initial development and demonstration of théycreased substantially, making handling easier. Secondly,
urface-channel-etched (SCE) diode structure by Bishgp of the unnecessary high-dielectric constant semiconductor
et al. [1], the planar GaAs Schottky diode chip has beematerial is eliminated from the final structure improving circuit
widely deployed in millimeter-wave mixers and multipli-performance. This technology has enabled planar subharmon-
ers. Novel technologies for further reducing the parasiti(;@a"y pumped mixers (SHPM’s) up to 600 GHz [12], [13].
continue to be explored [2], [3], but the most successfy this paper, we report on a QUID-style 240-GHz SHPM,
implementations are still based on the SCE diode structuignich is being developed for the NASA Earth observing
The demonstration of fundamental planar mixers [4], [S}ystem-microwave limb sounder (EOS-MLS) instrument, an
led to the development of diode pairs on a single chip fQfzone-depletion monitoring satellite to be launched early in
subharmonic mixing applications [6]-[8]. These results wefRe next century. The measured performance of these mixers is
based upon discrete diode chips that were either soldet§fliiy petter than the performance of discretely mounted chip
or bump bonded into the circuit. Mounting of the discretgjoqe mixers and the extra degree of circuit integration makes
planar diode chlps was far easier than the traditional Wh|sk§ﬁ-em more reliable and much easier to assemble in waveguide
contacted devices. However, as the frequency of operatighyits. The successful implementation of this technology at

increased and the diode chip size decreased, chip handling Qﬁg GHz has allowed us to scale directly to 650 GHz for
placement became difficult. At frequencies above 200 GHz, thgyijar space-borne applications.

GaAs substrate becomes a significant portion of a wavelengthQu|D_Sty|e devices have now been fabricated both at the

Jet Propulsion Laboratory (JPL), Pasadena, CA, and at the
) ) ) University of Virginia (UVa), Charlottesville, using distinct
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Fig. 1. SEM close-up of the anode region in a UVa device. This SEM was
taken after the completion of the front-side process and before the QUID
process.

Il. DEVICE PROCESSING

Devices fabricated at both the UVa and JPL have been tested
in the same waveguide blocks. A complete discussion of the
fabrication steps used in the UVa and JPL processes has been
reported [12], [14], however, it is worthwhile to elaborate on
the key differences between the two technologies.

Perhaps the most important difference between the two
device processes is the method used for forming the Schottky
contact. The UVa anode is circular, made by a combination
of dry and wet etching of the SiOand then electroplating
of Pt/Au. The finger is formed after the anode and is a
combination of sputtered Cr/Au and electroplated Au. It is (b)
nominally 2.5um Wlde.' taper.lng down to 1'7?‘m at the Fig. 2. SEM pictures of the JPL devices. (a) Close-up of the T-anode. (b)
anode, and 2.sm thick. This structure provides both abiode pair after channel etch and before the QUID process.
robust contact to the Schottky anode and increased mechanical
”g'd'ty due to the extra fmge.r thickness. A scanning eIECtrOentched using a chlorine reactive ion etch (RIE) process. In the
micrograph (SEM) of the finger/anode structure after tI”G ;

: S Va process, the substrate is also removed to an AlGaAs etch
surface channel etch is shown in Fig. 1. . : .
In comparison, an SEM picture of the JPL device (b stop with wet chemical etching, followed by a dry etch of the
' E‘GaAs after backside patterning. The oxide is then removed in

fore QUID process) is shown in Fig. 2. The rectangular—strig CF, RIE plasma, and chrome sputter etching exposes the
anodes are made with a tri-level e-beam process that URE * '

es .

multiple scans at different doses to expose the footprint anéi| filter structures.
separately expose the side beams of the T-structure. The
technique provides the flexibility to arbitrarily define the siz&. Device DC Characteristics
of the footprint and top-beam overhang. In this process, theTables | and Il contain a sample set of the diodes fabricated
finger is an integral part of the anode and is written at the samyéth at JPL and UVa that have been tested. Device dc param-
time. Schottky metal consists of Ti/Pt/Au (300/300/808)0 eters for each diode are based on standékd) and zero-bias
The nominal finger width is 2um over most of the air- capacitance measurements. The UVa diodes generally have a
bridge and tapers down to O:8n before contacting the anode higher turn-on voltage. We believe this is due to the UVa
Fig. 2(a) shows a close-up of the T-anode geometry. Th@odes being electroplated rather than evaporated resulting in
width of the anode is typically between 0.25-Qu#h and the a superior metal-semiconductor contact.
length can be as long as several microns, depending on thén impedance meter with a coaxial probe is used to measure
desired impedance. the total circuit capacitance at 1 MHz. Reference devices with

Once the front-side processing is complete, the QUIEhort and open anodes and missing anode fingers are used
process is utilized in which a two-part heat-cured epoxy te extract the device values. For both the UVa and the JPL
used to bond the GaAs substrate upside-down to a quartz-hdistles, the total capacitance of the structures ranges from 13
substrate. In the JPL process, the substrate is removed ta@a7 fF. Each anode has about 1.5-2 fF, while the remaining
AlGaAs etch stop layer in a selective GaAs wet etch. Afterapacitance is attributable to the parasitic capacitance of
the backside alignment, GaAs outside the device anode arethis structure and filter circuit. The pad-to-pad capacitance

920597-17-100885
70 @45 10.0kV
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TABLE |
PHYSsIcAL PROPERTIES OF THEDIODES USED IN THIS STUDY. EPILAYER IS
NoMINALLY 100 nm. THE Top THREE AND BoTTtom Two DIODES
WERE FABRICATED AT THE JPL AND UVa, RESPECTIVELY

Diode Doping Area Finger
length
(om™) (wm?) | (wm)

A-110196-14-9114-1 20x 10" }1.35 40
B-020597-18-10005-1 | 4.0x 10" 0.90 40
C-020597-18-10005-2 | 4.0x107 [090 |40
D-UVa-JPL240-15-D1 | 1.9x 107 1.23 20
E-UVa-JPL240-13-B4 | 1.9x 107 [ 0.95 20

TABLE 1
MEASURED CHARACTERISTICS OF THE YLz 40 1%

Diobes USED IN THIS STubDY R b\ T won

Diode | n R, | Is Ciot(fF) | Cor(fF)
pair Q | Amps before after
etch etch
A 1.27 |9 |3.8x10™ |15.2 12.8
1.24 17 1 38x10™
B 126 |7 |24x10™* | 158 13.6
125 17 | 2.0x10™
C 1.26 |7 {28x10™ |15.2 13.8
L3117 1 79x10™
D 126 |12 | Lixi0™ | 158 | 129 ()
1.46 | 10 4.6 10-14 Fig. 3. SEM photo of a QUID device (a) before and (b) after the epoxy has
0% been etched in an oxygen plasma.
E 128 |15 | 9.8x10® | 156 12.5
1.24 | 13 2.3x10’]6
.16 mm
. 4.4 mm i iagfu??lr guk): 3.5 mm
varies from 6 to 8 fF, while the pad-to-finger capacitance is T IF side i | LO side

approximately 1-2 fF. Finally, 3 fF of distributed capacitance a
falls to the large filter structure. ] ,,-.,f;
LO+RF reject LO pass, RF reject

B. Parasitic Capacitance Reduction 10

Based on computer simulations which include the effect 0 % y
of parasitic capacitance on mixer performance [15], a re- A0 1 _ ’\\\ %\
duction in pad-to-pad capacitance can result in improved 20 ¢ IF side N,
performance if the finger inductance is in the optimum range. v
In the QUID structure, epoxy with a dielectric constant of
3.1 fills the usually air-filled surface channel increasing the 0T m

1521, (dB}
&
o

pad-to-pad capacitance. Recent experiments conducted at UVa 60 LO P signal » P :
demonstrated that the epoxy could be etched away in an 701 band P
oxygen plasma, reducing the pad-to-pad parasitic capacitance 40 0 0 1o 150 200 250 300

substantially [14]. Fig. 3 shows a UVa-style device before and
after this epoxy etch step. Results for several devices are
given in Table II. In general the pad-to-pad Capacitance I' . 4. FDTD computer simulation of the microstrip filter used with the
reduced by as rﬁuch as 30%' from 6-8 to 4—6 fF. The ef‘feséjt harmonic mixer. For more details on the simulation procedure, see [16].
of this reduction on mixer performance will be presented in

Section IV.

Fretuency, (GHz)

diode pair. The design of the filter is identical to [7] with

some minor modifications. The initial 52-matching section

on the intermediate frequency (IF) side has been empirically

optimized for maximum local oscillator (LO) coupling. The IF

pass LO/RF reject filter now consists of two long hammerhead
The microstrip filter circuit, part of the QUID structure,sections (for LO rejection) plus a short hammerhead section

consists of hammerhead filter sections on each side of fffier signal rejection). Operation of the filter was confirmed

Ill. MIXER BLOCK

A. Microstrip Filter Circuit
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Fig. 5. Drawing showing the lower half of the waveguid-mixer block.
Fig. 7. Measured DSB mixer response of dioQeat 1.5 GHz IF.
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Fig. 6. Mixer performances as a function of etch time for diodle RF
frequency was 240 GHz. ) ) -
as a function of etch time. As can be seen, the parasitic-

. o . ) . . capacitance reduction results in better mixer performance and
with a finite-difference time-domain (FDTD) simulation, aggwer LO power requirement.

described in [16], and the computed response is shown in
Fig. 4. B. RF and IF Bandwidth

The mixer RF bandwidth was measured using a backward-
) ) ) ) ) wave oscillator (BWO) (110-130 GHz) as the LO source.

The waveguide-mixer mount design described in [7] demofsherent LO noise cancellation allows even a “noisy” LO to
strated excellent performance for IF's up to 8 GHz, by ysed as a pump [7]. RF bandwidth for diaBeis shown
the performance degraded significantly at 10 GHz due t0j@ Fig. 7. The best noise temperature obtained was 570 K
resonance in the relatively long transmission line between t§g ple sideband (DSB) with an IF frequency of 1.5 GHz.
LO guide and thek-connector bead at the IF output port. Ay nominal IF frequency scan for these diodes when placed
mod|f|ed block design is shown in Fig. 5. The IF resonangg tne waveguide mount of Fig. 5 is shown in Fig. 8. The
is removed by shortening the distance between the LO afpfyesonance at higher frequencies is removed and the mixer

signal waveguides by a factor of two. An added advantage §@rformance is relatively flat across the desired IF band.
shortening this distance was an LO power reduction due to

B. Waveguide Mount

reduced waveguide path loss. C. LO Power Requirement
Earlier mixers utilizing QUID devices have demonstrated
IV. MIXER PERFORMANCE mixing with 3-4 mW of LO power, but required 6—8 mW for

The mixer noise performance was measured using optimum performance [7]. For the present devices, 3—4 mW of
computer-controlled-mixer noise test system utilizing roomO power is sufficient. This improvement in LO coupling can
temperature and liquid nitrogen loads, and is detailed in [1He attributed to improvements in block design and to lower

parasitic QUID structures. Typical LO powers versus mixer
A. Effect of Parasitic Capacitance performance characteristics are shown in Fig. 9. Optimum LO
wer is approximately 2.3 mW, but a noise temperature of

In order to ascertain the quantitative effect of pad-to- : . ;
! quantitativ P P 0 K DSB is possible with only 1.5 mW.

capacitance on RF performance, diodeof Tables | and I

was mounted in the mixer block, RF tested, placed intact in an
oxygen plasma etch for 15 min, and then remeasured a tdtal
of three times. The devicé(V) was found to change only To measure the single-sideband performance of the mixer,
slightly, until the fourth etch cycle, when one of the anodes scanning Fabry—Perot interferometer (FPI) is inserted into
degraded significantly. Fig. 6 shows the mixer performantee RF reference load path of the mixer. For 24-GHz sideband

Single-Sideband-Mixer Performance
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F 800 . cases,T,, improves slightly at 2-GHz IF frequency. For

E W example, for diodeF, T,, drops to 540, while thel;, of

S 600 4 [—4—Tm diode C drops down to 490 K. Block A2 has the longer LO

= 400 4 el microstrip channels and associated IF resonance at 10 GHz.

5 200 M Block B is the design shown in Fig. 5.

) Our present results, although superior to other subharmonic

£ O t : : mixers, are still a factor of 1.4 worse than the best-ever

= 0 1 2 3 4 whisker-contacted fundamental mixer [18] at these frequen-
LO Power, (mW) cies. Even so, the practical advantages of SHPM mixers make

them the option of choice for our space-borne application.
Fig. 9. Diode C DSB performances versus LO power. LO frequency is
119.83 GHz and IF is 1.5 GHz.
V. CONCLUSION

= 2000 " 10 = 240-GHz waveguide-based subharmonic mixers with im-
~ 1800 "‘ x- = proved sensitivity and broad IF bandwidth have been demon-
£ ../l 35 2 strated. The QUID technology has enabled the implementation
r:—: 1600 \(’W g 3 of quartz-based fully integrated circuits in waveguide blocks
£ 1400 E for easy mounting and low loss. The performance of these
Zz <57l 485 © mixers is consistent over a number of different device batches
K 1200 = m T2 made by different processes at the UVa and JPL. The improved
17 —e— SSBLim 73 . . . .
1000 J : n n 8 performance of the mixer is attributed to lower parasitic

devices and an improved waveguide block. Sensitivities from
these subharmonic mixers are slightly better than those ob-
tained from discrete devices and are approaching the best sen-
Fig. 10. Measured SSB performance of diafle LO frequency is 119.83 Sitivities reported from whisker-contacted fundamental mixers

230 235 240 245 250
Signal Frequency (GHz)

GHz with 3.6 mW of LO power. at the same frequencies. Given the advantages of lower LO
TABLE |l frequency requirements and greater IF bandwidth, a properly
SUMMARY OF MIXER PERFORMANCE designed and implemented subharmonic mixer is a strong

contender for space-borne applications at these frequencies.

Diode El"i‘n RF Freq. | LO pwr Block The availability of a high-frequency low-loss fully integrated
K GHz oW diode/circuit structure will allow more complex multielement
A 560 1 230 2.8 A2 mixer/multiplier circuitry in the future.
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